
AFRL-IF-RS-TR-2000-9
Final Technical Report
February 2000

COOPERATIVE AND REACTIVE AGENTS FOR
INFORMATION SYSTEMS

University of California at Los Angeles

Wesly Chu

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

20000528 009
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

DTIC QUALITY INSPECTED 3

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-9 has been reviewed and is approved for publication.

APPROVED: (JvoX^ ö ÜM/X

CRAIG S. ANKEN
Project Engineer

FOR THE DIRECTOR:

NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE

FEBRUARY 2000
3. REPORT TYPE AND DATES COVERED

Final Jun 98 - Jul 99
4. TITLE AND SUBTITLE

COOPERATIVE AND REACTIVE AGENTS FOR INFORMATION SYSTEMS

6. AUTHOR(S)

Wesley Chu

5. FUNDING NUMBERS

C - F30602-98-C-0145
PE- 62702F
PR- R427
TA- 00
WU -PO

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California at Los Angeles
1400 Peter Uberroth Building
405 Hilgard Avenue
Los Angeles CA 90024

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFTB
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-9

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Craig Anken/IFTB/(315) 330-4833

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Active database systems have received increasing interest from both research and industrial communities. However,
trigger conditions in the active rules are often difficult to specify, especially as the complexity of the events and/or conditions
increases. To remedy this problem, we propose an active database system that supports rules with conceptual terms,
approximate operators, and complex events. The conceptual terms and approximate operators are user and context sensitive.
By introducing these high-level constructs, we not only simplify the rule specification process, but also increase the rule
expressiveness. Knowledge-based relaxation techniques are used for rule specification and relaxation. High-level concepts
and approximate operators used in rules are first relaxed into low-level active rules by using a tree-type knowledge structure
called Type Abstraction Hierarchy which can be generated automatically from the database using clustering algorithms. The
low-level rules are decomposed into a set of database triggers, which are then submitted into commercial active relational
databases for simple trigger-processing. Thus, our proposed high-level active database system supports complex event
detection without modification of the underlying database systems. The proposed active database system with high-level rule
processing and complex event detection has been implemented at UCLA. The system operates on top of commercial
relational databases that demonstrate the feasibility of high-level rule processing and complex event detection.

14. SUBJECT TERMS

Data Base, Artificial Intelligence,
Relaxation

Cooperative Rules, Cooperative Operators, Rule
15. NUMBER OF PAGES

28
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Abstract

Active database systems have received increasing interest from both research and

industrial communities. However, trigger conditions in the active rules are often difficult

to specify, especially as the complexity of the events and/or conditions increases. To

remedy this problem, we propose an active database system that supports rules with

conceptual terms, approximate operators, and complex events. The conceptual terms

and approximate operators are user and context sensitive. By introducing these high-

level constructs, we not only simplify the rule specification process, but also increase the

rule expressiveness. Knowledge-based relaxation techniques are used for rule

specification and relaxation. High-level concepts and approximate operators used in rules

are first relaxed into low-level active rules by using a tree-type knowledge structure called

Type Abstraction Hierarchy which can be generated automatically from the database

using clustering algorithms. The low-level rules are decomposed into a set of database

triggers, which are then submitted into commercial active relational databases for simple

trigger-processing. Thus, our proposed high-level active database system supports

complex event detection without modification of the underlying database systems. This is

in contrast to some of the research work on complex event detection that requires

modification of the underlying database systems. A new, more flexible event condition

evaluation scheme is proposed for processing complex conditioned events. Such an

evaluation scheme also fits naturally into the distributed environment for detecting

complex conditioned events that occur at different sites to cause a joint action. The

proposed active database system with high-level rule processing and complex event

detection has been implemented at UCLA. The system operates on top of commercial

relational databases that demonstrate the feasibility of high-level rule processing and

complex event detection.

Table of Contents

1 Introduction 1

2 Related Works 2

3 Rules with Conceptual Terms and Approximate Operators 2

3.1 Cooperative Features 2
3.1.1 Query Relaxation Techniques 2
3.1.2 High-Level Rule Condition Specification 4
3.1.3 Rule Action Specification 5
3.1.4 An Example 5

3.2 Constructs in Cooperative Rule 6
3.2.1 Event Types 6
3.2.2 Event-Condition Evaluation Scheme 6
3.2.3 Event Definition Parameterized Rules 6
3.2.4 Valid Intervals Definition in Rules 7
3.2.5 Parameter Binding and Passing in Rules 8

4 Centralized Cooperative Sentinel (CoSent) Architecture 10

4.1 CoSent Architecture 10

4.2 CoSent Information Flow 11

5 Distributed Cooperative Sentinel (CoSent) Architecture 13

5.1 Centralized Event Management with Distributed Event Detection 13

5.2 Distributed Event Management with Distributed Event Detection 14

6 Implementation and Experience 16

7 Conclusion 17

8 References 17

List of Figures

Figure 1: Examples of Type Abstraction Hierarchies
Figure 2: The Cooperative Sentinel Architecture
Figure 3: Centralized Event Management Using (1) Database Gateway
Figure 4: Distributed Event Management with Distributed Event Detection

3
10
14
15

in

1 Introduction

Active database systems (sentinels) [WC95] enhance traditional database functionality with rule
processing and triggering capabilities. Event Condition-Action (ECA) rules are used to monitor and
process events with conditions. When an event occurs, and if the conditions specified in the rule
hold, then appropriate actions are taken.

Traditional sentinels process rules with exact conditions. However, real-world event
conditions are often inexact, uncertain, and represented by high-level concepts. Further, these

■ conditions are user- and context-sensitive. For example, a pilot would like to be notified if a bad
weather forecast is reported in the region of his interest. Here "bad weather" is a high-level concept
whose semantics depend on the user type (e.g., "pilot," "sailor"), and application context (e.g.,
"mission type"). To handle such inexact and uncertain conditions, we introduce knowledge-based
relaxation (cooperative query answering) techniques [CMB93, CYC+96] to the sentinel system so
that such a system can support ECA rules with high-level concepts and cooperative operators.

Commercial database systems, such as Oracle and SyBase, provide only simple ECA rule-
processing capabilities. Each rule can only monitor one database event with certain conditions.
Further, a single table can only be monitored by at most three triggers (one for each INSERT,
DELETE, and UPDATE event) which hinders the usability and expressive power of the triggering
systems. Triggering systems with complex event detection mechanisms have been researched
[AG89, Cha97, GD93]. However, such systems require modification of the underlying database
systems, which is not suitable to the commercial database systems. The system described in [Cha97]
uses a "Complex Event"—"Global Condition"—"Action" scheme to represent rules with complex
events. Under such a scheme, complex events with different condition evaluation times are
difficult to handle. Therefore, we extend the conventional Event-Condition-Action (ECA) scheme
into the "Conditioned Event"-Action (EcA) scheme that allows succinct expression of complex
events with different condition evaluation timing requirements. Further, our system can enhance
commercial database triggering systems with complex event detection and provide multiple triggers
on a single table.

A large number of active rules exist in a large database triggering system. An event can
occur multiple times during the lifetime of the system. Only a select few may be of interest to a
user. We provide a valid interval construct for active rules to allow the user to specify the event
condition. This reduces the amount of event detection and rule processing, and thus improves
system performance.

Current commercial database systems provide gateways to access multiple database systems.
It is possible to install triggers on different database systems through such gateways. However, to
provide more flexible event detection and composition, as well as system performance, distributed
event detection should be used. Therefore we have extended our triggering system to include
distributed event detection, which can detect events occurring at different sites that cause a joint
action when the conditions of these events are satisfied.

In Section 2 of this report, we compare the currently available composite event detection
techniques. In Section 3, we discuss our extension to the traditional ECA scheme, which
incorporates high-level concepts and cooperative operators with a flexible condition evaluation-
timing scheme. We then present the centralized Cooperative Sentinel (CoSent) architecture in
Section 4 and the distributed sentinels in Section 5. Section 6 describes our experience and test
examples. Section 7 is our conclusion, and a set of references is provided in Section 8.

2 Related Works

The HiPAC project [Cea89] pioneered the active database systems research in the mid-1980s.
Research work has been done in the areas of rule language design, rule execution semantics, rule
debugging, and system architecture. Many active rule specification languages were designed. SQL3
includes simple trigger-processing capabilities [IA94]. The complex event processing research
results in three types of systems: event-tree in Sentinel [Cha97], petri-net in SAMOS [GD93] and
finite state automata in Ode [AG89]. The semantics of complex events in event-tree based systems
are studied in [CAK94]. Various research prototypes require either modification of underlying
relational database systems or the use of object-oriented systems as the underlying database.

3 Rules with Conceptual Terms and Approximate Operators

3.1 Cooperative Features

Traditional active rules require precise specification of trigger conditions and actions and monitor
database attributes as events. To specify the active rules, rule designers need to have detailed
knowledge (schema as well as data) about the underlying databases. However, such detailed
knowledge is often difficult and time-consuming to obtain. Furthermore, the rule designer and user
apprehension of a trigger condition may be inexact and are user and context sensitive. To remedy
these shortcomings, we propose to generalize the ECA rules to support conceptual terms and
approximate operators to improve the rule expressiveness. We use knowledge-based relaxation
techniques to transform the high-level rules to low-level rules for processing in commercial database

triggering systems.

3.1.1 Query Relaxation Techniques

Knowledge-based query relaxation was used in cooperative systems such as CoBase [CMB93,
CYC+96]. Relaxation increases the search scope of the query condition and is able to provide
approximate matching when no exact match can be found. Applying relaxation techniques on
trigger conditions allows users to specify rules with approximate and cooperative terms, and thus
eases the trigger condition specifications and increases the expressiveness of the rules.

Chemical Suit Size

XXL XL L M S XS XXS

a. chemical suit size TAH

Wind Speed (m/s) Wind Speed (m/s)

Breeze Fair Strong Very Strong Breeze Fair Strong Very Strong
(0-3.65) (3.65-5.85) (5.85-8.35) (8.35-16.6) (0-4.35) (4.35-7.85) (7.85-15.45) (15.45-25)

b. wind speed TAH for pilots c. wind speed TAH for captain

Figure 1: Examples of Type Abstraction Hierarchies

We use a novel multi-level tree structure for knowledge representation called the Type
Abstraction Hierarchy (TAH) [CYC+96]. High-level nodes in the TAH represent more general
information than that of the lower nodes. Conceptual terms can be defined on the TAH nodes. As
a result, queries with conceptual conditions can be specified and processed. For example, in the
query, "find chemical suits with size large," the conceptual term large can be transformed into XXL,
XL, or L as shown in Figure la. The query condition can be generalized (scope enlarged) by moving
up and specialized (scope reduced) by moving down the TAH. The relaxation process is repeated
until satisfactory answers are returned.

In addition to providing implicit modifications via TAHs, relaxation can be specified explicitly
through the use of cooperative operators such as approximate, near-to, similar-to, etc. The
approximate operator relaxes the specified values within an approximate range. For example,
"approximate 6:00am" is relaxed to (5:00am, 7:00am). The near-to operator can be used for
specifying geographical nearness. The similar-to operator can be used to find objects similar to the
given target object based on a set of attributes. Weights can also be assigned to the set of attributes
in accordance to their relative importance. The returned answer sets are ranked based on a pre-
specified measure that evaluates the nearness of the answers from the target object.

Clustering algorithms have been developed to generate TAHs automatically from data
sources based on a set of attributes selected by the user [CC94, MC93, CCHY96]. Therefore, the
TAHs are customized based on the user and context. The generated TAHs can be edited (e.g.,

addition and deletion of TAH nodes, naming the TAH nodes with conceptual terms, etc.) by the
domain experts.

Relaxation control operators such as relaxation-order, unacceptable-list, preference-list,
relaxation-level, and not-relaxable are provided to control the relaxation process. The user can
specify the relaxation control in the query. A default relaxation control can also be obtained from
user types.

3.1.2 High-Level Rule Condition Specification

In this section, we shall discuss the application of query relaxation techniques to high-level rule
specification.

Rules with High-Level Concepts

In a typical ECA rule, the trigger condition can be specified by precise values. For example, "the
wave height is 3 meters, and the wind speed is 16 meters per second." However, the trigger
conditions are often "fuzzy" and difficult to specify. The user usually has only an approximate
estimate of the situation. Further, specification usually varies and is user and context sensitive.
Since TAHs can represent the database content, the user can customize the TAH by selecting the
attributes used in generating the TAHs. The domain experts can then label the TAH nodes with
conceptual terms (see Figure 1) and use them in the rule specification. For example, a user wants
to be notified "if the weather at Bizerte is very bad." "Very bad" is a high-level concept that is
determined by the user type. For example, for an airplane pilot, "the weather is very bad" translates
into "the wind speed is very strong, and the visibility is very poor"; while for a ship captain, "the
weather is very bad" translates into "the wind speed is very strong and the wave height is very high."
Notice that "very strong," "very high" and "very poor" are conceptual terms and can be represented
by the corresponding TAHs. The conceptual terms are user- and context-sensitive. For example,
"very strong" wind speed for a pilot and captain has different interpretations. Based on the TAHs
for the pilots, the above high-level rule condition is translated into "the wind speed is between 8.35
and 16.6 meters per second, and the visibility is less than 10 meters." For the captain, the above
high-level rule condition is translated into "wind speed is in the range 15.45 to 25 meters per
second, and the wave height is greater than 5 meters" (as shown in Figures lb and lc).

Rules with Cooperate Operators

We introduce cooperative operators such as approximate, near-to, and similar-to in the rules to
increase expressiveness. For example, if a ship is scheduled to pass near Bizerte approximately on
9/1/1998, the captain wants to be informed if the weather condition is bad. Here "near to" and
"approximate" are both cooperative operators. Introducing these operators into the triggering
system greatly simplifies the rule specification. The user need not know the domain knowledge to
specify the ranges of these operators. The range values of "near to" and "approximate" can be
obtained from the corresponding TAHs, which can be customized based on user and context.

Relaxation Controls in High-level Rules

To specify a concept or cooperative operators in high-level rules, TAHs are used as knowledge
representation to interpret the terms. Default TAHs for a user type and context can be used if no
specific TAH is specified.

The user can also supply specific TAHs for representing the conceptual and approximate
terms. Further, the relaxation process of a conceptual term can be controlled and specified by the
user through relaxation control operators during the relaxation process (e.g., relaxation-level).

3.1.3 Rule Action Specification

Cooperative features of the relaxation techniques can also be used in rule action specification. For
example, consider the following rule, "if not enough large-size chemical suits at the warehouse in
city X, then find 10,000 units of large-size chemical suits from depots near to city X.'" In the action
part of the above rule, "10,000" and "large-size" can be implicitly relaxed if there are less than
10,000 large-size chemical suits available. By introducing cooperative features into active rule
action specification, the rule designers can rely on CoBase [CMB93] to relax the query condition if
the exact condition is not satisfied, and relax the quantity to "approximately 10,000," and "large-
size" to "medium" or "extra large."

3.1.4 An Example

Consider an air force database containing information of aircraft departure rates and aircraft
maintenance problems. Daily departure numbers of different types of aircraft are inserted into the
ac_departure table. Other attributes in the ac_departure table include the date the tuple is
inserted, the type of aircraft. Similarly, ac_problem summarizes different maintenance problems
occurring to each type of aircraft daily. If the departures of a specific type of aircraft, e.g., C-5,
within the last seven days is significantly low and the occurrence of the fuel filter problem on the
same type of aircraft is extremely high during the same period, the commander should be notified of
this situation. The following is the corresponding high-level rule representation.

R: If departure rate of C-5 within the past 7 days is significantly low
and
if fuel filter problem rate of C-5 is extremely high within the past 7 days, then
report departure rate, problem type and date of occurrences to the commander.

Note that in the above example, the rule has a conditioned event with a valid-interval
specification and an action. A conditioned event has an event and a condition. A condition can have
all the cooperative constructs introduced in the following section. The transition tables/tuples,
such as inserted or deleted, can be used in the condition specification to refer to the
corresponding tuples. The interpretation of these transition tables/tuples varies according to the

granularity of the rule specification. An action is a user-defined procedure, which may contain
cooperative operators. The event detection will only detecting the events occurring within the valid

interval.

3.2 Constructs in Cooperative Rule

3.2.1 Event Types

An event can be either a simple event or a complex event. A simple event is a database update event or
a time event. A database update event is either a database insert, delete, or update. A time event
can be absolute time, e.g., 3/1/1998 12:00pm or relative time, e.g., 2 days after an aircraft fuel filter
problem occurs, or periodic time event, e.g., 3:00pm everyday. A complex event is a regular
expression of conditioned events. Two types of operators can be used in the complex event
expression: unary and binary operators. The binary operators contain AND, OR, IMMEDIATE-
FOLLOWED-BY, and FOLLOWED-BY. The unary operators include *, +, and ?, representing
zero or more, one or more, and zero or one occurrences of immediate sequence of the same

conditioned event, respectively.

An event may have multiple occurrences. To specify which set of occurrences for an event

is of interest, an occurrence modifier can be specified. For example, if E is an event, E{ 1, 3-4, 6-}
specifies that only the first, third, fourth, and all the occurrences of E above the sixth are of interest.

3.2.2 Event-Condition Evaluation Scheme

Traditionally, an active rule is specified as an event-condition-action. The event can be either a
simple event or a complex event without condition specifications. The condition is evaluated only
after the event occurs. If the condition is satisfied, the action is taken [CAK94]. However, such a
condition evaluation-timing scheme does not allow the user to specify the event condition to be
evaluated at the time of the occurrence of a sub-event. For example, a user wants to be informed if a
certain stock increases by ten percent in value, followed by a "buy" recommendation for the stock.
The condition that the stock increases ten percent needs to be evaluated at the time of the report
of the stock rather than after the entire event (stock increases by ten percent in value, followed by a
"buy" recommendation) has already occurred. An alternative way of implementing this rule is to
install a conditioned event into the database and let the database evaluate the condition at the
moment the event occurs. However, due to the limitation of current commercial database systems
on the number of triggers on a single table, this approach is not implementable on top of
commercial databases. The traditional event condition evaluation scheme can be achieved by using
a global condition in our rule specification. To distinguish it from the traditional ECA scheme, we

label our "conditioned event"-"action" scheme as EcA.

3.2.3 Event Definition and Parameterized Rules

Within a domain, many event specifications are either identical or different by only a few
parameters. To increase the reusability of the event components, we provide event definition
constructs and parameterized rules.

If a sub-event is used in different event definitions or in multiple rules, a rule designer can first
define a named-event and then refer to the name of the event wherever the named-event is
needed, as shown in the following example:

DEFINE EVENT Esubl AS ...
DEFINE EVENT Esub2 AS ...
DEFINE EVENT El AS Esubl FOLLOWED-BY Esub2 ...
DEFINE EVENT E2 AS Esubl AND Esub2 ...

Sub-events Esubl and Esub2 are used in the definitions of both events El and E2.
Parameterized rules can be used to specify a set of rules with the same structure. Each parameter in
the rule can be substituted with different values to generate a set of different rules. For example, we
can specify a set of rules to monitor the weather condition for different locations using parameter
loc:

DEFINE EVENT bad_weather[loc]
AS INSERT ON weather_report
IF (INSERTED.location = loc AND

INSERTED.weather IS "BAD")

ON bad_weather['Los Angeles'] DO ...
ON bad_weather['Boston'] DO ...

Here, "Los Angeles" and "Boston" are two value instances of parameter $I0C$. The parameter can
be used across the boundary between the conditioned event definition and action definition.

3.2.4 Valid Intervals Definition in Rules

To facilitate the rule designer in specifying the event of interest so that no irrelevant information
will be sent to the user, our system provides valid interval definition functionality. The valid
intervals are a set of temporal intervals, where each interval has a begin point and an end point.
The effective valid interval is the disjunction of the individual valid intervals. The begin point or
end point can be specified by any event, for example, 3/1/98 or "troops enter a certain region
event." If the begin point or end point event can occur multiple times and is not occurrence-

modified to a point event, the first occurrence of such event is to be taken as the begin or end

point.

For any interval, if the begin point is missing, the event valid interval starts from the system
starting time; and if the end point is missing, the valid interval continues until the system is shut

down.

For example, the following two event definitions

DEFINE EVENT troop_move_in[trp, loc] AS
INSERT ON troop_info FOR EACH ROW
IF (INSERTED.troop = trp AND INSERTED.location = 'loc')

DEFINE EVENT troop_move_out[trp/ loc] AS
DELETE ON troop_info FOR EACH ROW
IF (DELETED.troop = trp AND DELETED.location = 'loc')

define two interval end-point events, trOOp_move_in and trOOp_move_OUt. The following
definition defines that the weather_bad_for_troop event will be detected only if a "bad
weather" report for region IOC is received, and also if the troop trp is in the region specified by IOC.

DEFINE EVENT weather_bad_for_troop[trp, loc] AS
INSERT ON weatheMnfo FOR EACH ROW
VALID FROM troop_move_in[trp, loc] TO troop_move_out[trp, loc]
IF (INSERTED.weather IS "BAD" AND

INSERTED.location = loc)

3.2.5 Parameter Binding and Passing in Rules

Parameter binding and passing topics for active databases have been studied [WC95]. In such a
scheme, an event is often specified by a set of parameters. When the event occurs, the values of the
parameters are passed to the condition evaluator. However, since commercial relational databases
such as Oracle and SyBase limit the number of triggers on a single table, we cannot easily adopt the
parameter binding and passing scheme. To achieve the same effect as the parameter binding and
passing schemes, we can utilize global condition specifications to bind the parameters from different
events, as shown in the following specifications for the "aircraft problems" example:

DEFINE EVENT departure_rate[$aircraft$, $days$, $description$] AS
INSERT ON ac_departure FOR EACH ROW
IF (SELECT SUM (d.departure_num) FROM ac_departure d

WHERE INSERTED.ac_type = $aircraft$ AND
d.ac_type = INSERTED.ac_type AND
INSERTED.date - d.date >= 0 AND
INSERTED.date - d.date < $days$) = $description$

USE-TAH ac_departure_summary_tah($days$, $aircraft$)

DEFINE EVENT aircraft_problem[aircraft, days, problem, description] AS
INSERT ON ac_problem FOR EACH ROW
IF (SELECT SUM (p.departure_num) FROM ac_problem p

WHERE INSERTED.ac_type = $aircraft$ AND
p.ac_type = INSERTED.ac_type AND
INSERTED.problem = $problem$ AND
INSERTED.date - p.date >= 0 AND
INSERTED.date - p.date < $days$) = $description$

USE-TAH ac_problem_summary_tah ($days$, $aircraft$, $problem$)

ON departure_rate['C-5', 7, "significantly low"]
AND
ON aircraft_problem['C-5', 7, 'filter problem', "extremely high"]
IF departure_rate.INSERTED.date = aircraft_problem.INSERTED.date
DO report_to_nearby_commanders['Air Force', 'DS', 'Norfolk',

"Within the past 7 days from: (departure_rate.INSERTED.date),
the departure rate of C-5 is significantly low and
the occurrence of filter problem on C-5 is extremely high."],

The departure_rate.INSERTED.date = aircraft_problem.INSERTED.date binds the
occurrence date for the two events.

4 Centralized Cooperative Sentinel (CoSent) Architecture

4.1 CoSent Architecture

The centralized CoSent consists of a trigger-processing agent, an action-processing agent and a
notification agent. The trigger-processing agent accepts and manages cooperative rules, transforms
the cooperative rules into low-level rules without cooperative terms, and installs triggers and actions
into the notification and action-processing agent. The trigger-processing agent also manages and
detects complex events The action-processing agent stores the action implementations, accepts
trigger actions from the trigger-processing

Cooperative rule

! ©

Rule Rep with
Coop. Operators

Rule Parser

r
i ©

Cooperative Processor
©

Rule
•^.Base—*

Rule Manager

Rule Rep without
Coop. Operators

©

Trigger Processing Agent

©

©

©

©

©

Event Manager

Event Detector
El E2

A A
AA

~®t
*■ Event Queue D

Notification Agent
T

Action
Processing

Agent

©
Data Sources

Triggering Action

Figure 2: The Cooperative Sentinel Architecture. Dashed line depicts installation flow, and solid line depicts
execution flow.

agent, and fires appropriate actions when the trigger-processing agent notifies it of the triggering
rules, together with event triggering information. The action-processing agent may also request
additional information from other agents such as the cooperative query agent and triggering
processing agent. New rules can be easily added into the action-processing agent online without
disturbing the trigger-processing agent. The notification agent monitors the underlying database
changes as required by the trigger-processing agent. The notification agent informs the trigger-
processing agent when such changes occur.

The trigger-processing agent consists of a rule parser, cooperative processor, rule manager and
an event manager. The rule parser takes a cooperative active rule and generates an internal

10

representation of the rule, which contains the cooperative terms. The cooperative processor
translates the cooperative rules into a set of EcA rules with exact conditions and action
specifications. The rule manager is responsible for the storage, scheduling, termination
management, and installation of the rules. All cooperative active rules are stored in the rule base.
The event parts are installed in the event manager, and the action parts are installed into the
action-processing agent. The event manager consists of an event detector and an event queue. The
event queue buffers the incoming simple notification event, and informs the event detector of the
occurrence of simple events. Given the conditioned event from the rule manager, the event
detector constructs an event tree which captures the semantics of the conditioned event. All event
trees are maintained in the event detector. When simple notification events happen, the event
detector processes them according to the event trees, evaluates the conditions, and informs the
action-processing agent of the occurrence of the events.

4.2 CoSent Information Flow

The CoSent information flow consists of two phases: an installation phase and an execution phase.
We use the aircraft problem example described in Section 3 (Rule R) to illustrate the installation
and execution flow of the system. In the installation phase, the rule manager analyzes and
decomposes all the cooperative EcA rules and installs the necessary information in the event
manager and the action-processing agent. When a sentinel event occurs, CoSent goes through the
execution phase to determine whether any rules are triggered. In the following descriptions, steps
(1) through (6) represent the installation phase; steps (7) through (12) represent the execution
phase.

(1) Input a high-level active rule such as rule R.

(2) The rule parser parses the high-level rule and generates an internal rule
representation (RuleRep) for communication among modules. RuleRep of R has
ConditionedEventRep (EcRep) and ActionRep (ARep). The ConditionedEventRep is

the conditioned event part of the rule; e.g., in rule R, the ConditionedEventRep (EcRep)
represents the conditioned-event (with local condition evaluation).

Ec: If departure rate of C-5 within the past 7 days is significantly low (Eel')
and
if fuel filter problem rate of C-5 is extremely high within the past 7 days (Ec2').

The ActionRep represents user-defined action, e.g., in rule R, the
ActionRep (ARep) represents the action:

A: Report the departure rate and problem occurrence, and
data of occurrences to the commanders.

11

(3) The cooperative processor translates cooperative terms in the conditioned event of the rule
into a set of range specifications; e.g., in rule R, the high-level conditioned event (Ec) is
translated into a low-level conditioned event (Ec') with range specifications:

Ec': If departure rate of C-5 within the past 7 days is less than one departure per

day (Eel')
and
if fuel filter problem rate of C-5 is greater than five instances
per day within the past 7 days (Ec2'),

which does not have any cooperative terms.

(4) The rule manager installs the action part of the rule, e.g., A of R, into the action-processing

agent.

(5) The rule manager installs the low-level conditioned event, e.g., Ec', of the rule into the
event manager. The event manager builds an event tree for the incoming low-level
conditioned event. The subtree rooted at each node represents a complex conditioned
event. Based on the input from its children nodes, a node determines the occurrence of its
associated complex conditioned event. A condition evaluation mechanism is also included
at each node to evaluate the associated condition. For example, when the event manager
receives Ec', it constructs an AND tree with leaf nodes representing Eel' and Ec2'. The root
node of the AND tree represents Ec', where E is an AND' event of Eel' and Ec2' and C is a
joint condition that guarantees that the dates of occurrences of both Eel' and Ec2' are the
same. Eel' represents a simple conditioned event with event El

El: insert into ac_departure table
and condition Cl'
Cl': departure rate of C-5 within the past 7 days is less than one departure per day.

Ec2' represents a simple conditioned event with event E2

E2: insert into ac_problem table
and condition C2'
C2': fuel filter problem rate of C-5 is greater than five instances

per day within the past 7 days.

(6) The event manager installs the simple sentinel triggers, e.g., triggers El and E2, into the

notification agent.

12

(7) When a sentinel event occurs, e.g., El or E2, the notification agent saves the transition
information of the event and then sends an event notification to the event queue of the
event manager.

(8) The queue notifies the event detector of the occurrence of a sentinel event. The event
detector processes the event notification using the event trees.

(9) If a root of any event tree is reached, which implies the occurrence of the conditioned event
represented by the event tree, an event notification message with appropriate parameter
binding will be sent to the rule manager. For example, suppose El had happened and Cl'
was satisfied (which means Eel' had occurred). Now E2 happens, and after the condition
C2' is evaluated to true, the conditioned event Ec2' occurs. As a result, the event E happens
at the root node of the tree. If the condition C is also satisfied, then the conditioned event
Ec' occurs.

(10) The rule manager schedules the execution order of the set of rules that are triggered by this
event and sends the parameter binding to the action-processing agent. In our example, only
a single rule R is triggered. The parameter bindings, aircraft type and problem type are sent
to the action-processing agent.

(11) The action-processing agent acquires additional information from the other agents such as a
CoBase agent and a trigger-processing agent if necessary. In this example, no additional
information is required.

(12) The action-processing agent invokes the user-defined procedure, e.g., the procedure A with
correct parameter binding.

5 Distributed Cooperative Sentinel (CoSent) Architecture

When data is distributed over multiple sites, distributed trigger-processing is needed. We extend
CoSent to detect events occurring at different sites to cause a joint action. We shall present the
following two distributed event detection approaches in the trigger system: (1) centralized event
management with distributed event detection and (2) distributed event management with
distributed event detection. The main difference between these two approaches is that the
distributed simple event detection approach uses global complex event processing, while the other
approach processes complex events in a distributed manner.

5.1 Centralized Event Management with Distributed Event Detection

13

In the centralized CoSent architecture, the notification agent monitors database events from a
single data source. In order to monitor database events from multiple data sources, we can either
rely on database gateways with triggering capabilities (Figure 3(1)), or using a notification agent for
each data source for data source event detection (Figure 3(2)).

Since a database gateway provides a single view for multiple data sources, distributed events
coming from multiple sources can be viewed as events coming from a single view. To CoSent, this
database gateway acts like a single data source, and no modification is needed for the triggering
processing agent. Notification agents and action-processing agents need to be added for processing

distributed events.

Trigger Processing Agent

Event
Manager

Notification Agent
T

Database Gateway

Data Sources

(1)

Figure 3: Centralized event management using (1) database gateway, or (2) distributed notification agents for
event detection.

If no database gateway with triggering capabilities is available for any of the data sources, we
have to develop a notification agent for each data source. The notification agent for a data source
translates a simple data source event specification into the underlying data source trigger, or
emulates simple trigger capability if the data source does not support simple triggers. A facilitator is
added to provide the information on the trigger capabilities of the underlying data sources. When
a simple event needs to be installed into a data source, the global event manager consults with the
facilitator to locate and then install the simple event into the notification agent.

Once simple events are installed into the underlying data sources through either database
gateways or notification agents, the event processing via event management is the same as that in

centralized CoSent.

5.2 Distributed Event Management with Distributed Event Detection

14

A complex event usually consists of several sub-events, each of which comes from a set of closely
related data sources. To distribute the workload from the central trigger-processing site, to improve
the triggering system performance, and to minimize the communication cost in trigger-processing,
the event management can be distributed and placed close to the data sources. Therefore, we
propose a hierarchical distributed event-processing architecture as shown in Figure 4. An event-
processing agent monitors sub-events from other event processing agents or data sources via the
notification agent. An event-processing agent monitors sub-events from other event processing
agents or data sources vis the notification agent. An event-processing agent consists of an event
manager and an optional facilitator. The facilitator contains information on the event-

Figure 4: Distributed event management with distributed event detection. The event-processing agent on the left
uses distributed notification agent approach, while the agent on the right uses a database gateway.

processing capabilities of different event-processing agents and their data sources. To process an
active rule with complex events, the global event manager in the trigger-processing agent consults
the facilitator, and decomposes the complex event into sub-events, so that each sub-event can be
handled by the local event-processing agent. The sub-event is then installed into the corresponding
local event-processing agent.

Such distributed event management allows parallel event processing, and thus improves the
system response time. This is especially helpful when there is a large set of active rules with a high
triggering frequency.

15

6 Implementation and Experience

We have implemented a prototype cooperative sentinel system at UCLA. It operates on Sun Solaris
as well as on the Windows NT system. The data sources include Oracle 7.3, Oracle 8 and SyBase
database systems. The trigger-processing agent is implemented in C+ + . Orbix CORBA is used for
agent communication. A Java-based user interface that includes map display based on MapObject
is also available for rule specification and rule activation monitoring. We have measured the
performance of the trigger system on a test database (around 250 tables, with sn average of 5,000
tuples per table). The CoSent system with 150 high-level complex rules is tested. The average
delay between database update and action notification is less than 1 second for an average of 3-level
rule complexities. In our system, conceptual terms and approximate operators such as near-to and
similar-to can be used to specify cooperative active rules. These cooperative terms are user and
context sensitive. Relaxation control operators such as use-tah and relaxation-level are also

provided to further refine the relaxation process.

We have resolved the following list of problems during the implementation.

1. Since neither Oracle nor SyBase provides a message-passing mechanism to communicate
between the application process and triggers, we used an ad hoc method to implement
the notification agents. The problem is more pronounced when porting our system from
the Solaris to the NT system. A methodology for notification agent construction is

necessary for different data sources.

2. Since our goal is for our system to operate on top of commercial database systems, we did
not modify the internal triggering mechanism. As a result, the transition information is
not available when a simple database event is notified to the event manager. In order to
access transition information in event condition evaluation, the database trigger has to

preserve the transition information in a transition table.

3. In our initial development, we did not have valid interval control. As a result, the
amount of information the system has to maintain increases rather quickly. Therefore,
the performance of the triggering system decreases as time goes on, even though many
rules are no longer relevant. The introduction of the valid interval concept remedies this

problem.

4. The action-processing was an integral part of the trigger-processing agent in the initial
development. Whenever the user inserts a new action procedure, the entire system has
to be brought down and recompiled. This is clearly not acceptable for mission-critical
applications. Our new design separates the action-processing agent from the trigger-
processing agent, and thus allows seamless addition of newly specified action procedures.

16

7 Conclusion

We have presented the incorporation of high-level concepts and cooperative operators into
traditional active rule specifications. Knowledge-based relaxation techniques are used to transform
the rules with high-level concepts to low-level rules to be used on top of conventional commercial
database trigger systems. As a result, the rule designer is able to focus more on the semantics of the
active rules than on the user- and context-specific range specifications. We propose the EcA
condition evaluation scheme, which facilitates more flexible and more expressive active rule
specification. Valid interval and occurrence modifier constructs are provided to increase the
expressive power of the rule system, as well as to improve the system performance. Our system can
operate on existing commercial database systems without modification of the underlying systems.
Two approaches of distributed sentinels, centralized event management and distributed event
management are also presented. We have constructed a prototype CoSent at UCLA. CoSent is
operating on top of the trigger systems of commercial relational database systems (e.g., Oracle and
SyBase). We have demonstrated the feasibility of applying the relaxation technology into the active
rule systems, and performed complex event detection.

8 References

[AG89] R. Agrawal and N. Gehani. "Ode (object database and environment): The language
and the data model." In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 36-45, Portland, Oregon, May 1989.

[CAK94] S. Chakravarthy, E. Anwar, and S-K Kim. "Composite events for active databases:
semantics contexts and detection." In The 20th International Conference on Very Large
Databases, pages 606-617, Santiago, Chile, 1994.

[CC94] Wesley W. Chu and Kuorong Chiang. "Abstraction of high-level concepts from
numerical values in databases." In Proceedings of AAAI Workshop on Knowledge
Discovery in Databases, 1994.

[CCHY96] W. W. Chu, K. Chiang, C. Hsu, and H. Yau. "An error-based conceptual clustering
method for providing approximate query answers." CACM, 1996.

[Cea89] S. Chakravarthy and et al. "HIPAC: A research project in active, time constrained
database management (final report)." Technical Report XAIT-89-02, Xerox
Advances Information Technology, Cambridge, MA, August 1989.

17

[Cha97]

[CMB93]

[CYC+96]

[GD93]

[IA94]

[MC93]

[WC95]

S. Chakravarthy. "SENTINEL: An Object-Oriented DBMS with Event-Based

Rules." InSIGMOD '97, Arizona, USA, 1997.

Wesley W Chu, M. A. Merzbacher, and L. Berkovich. "The design and
implementation of CoBase." In Proceedings of ACM SIGMOD 93, pages 517-522,

Washington D.C., USA, May 1993.

Wesley W. Chu, Hua Yang, Kuorong Chiang, Michael Minock, Gladys Chow, and
Chris Larson. "CoBase: A scalable and extensible cooperative information system"

Journal of Intelligent Information Systems, 6(11), 1996.

Stella Gatziu and Klaus Dittrich. "Event in an active object-oriented database
system." In Proceedings of the First International Workshop on Rules in Database

Systems, Edinburg, September 1993.

ISO-ANSI. Iso-ansi working draft: "Database language sql3." Technical Report

X3H2/94/080 and SOU/003, ISO-ANSI, 1994.

Matthew Merzbacher and Wesley W. Chu. "Pattern-based clustering for database
attribute values." In Proceedings of AAAI Workshop on Knowledge Discovery,

Washington D.C., 1993.

Jennifer Widom and Stefano Ceri. Active Database Systems: Triggers and Rules for

Advanced Database Processing. Morgan Kaufmann, 1995.

eU.S. GOVERNMENT PRINTING OFFICE: 2000-510-079-81244

18

MISSION
OF

ÄFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

